

Cloud Native Monetization

Benefits of Deploying Oracle Communications Billing and Revenue

Management on Cloud Native Infrastructure

An Oracle whitepaper

October 2020 | Version 1.00

Copyright © 2020, Oracle and/or its affiliates

1 WHITE PAPER | Cloud Native Monetization | Version 1.00

 Copyright © 2020, Oracle and/or its affiliates

SAFE HARBOR STATEMENT

The following is intended to outline our general product direction. It is intended for information purposes only, and may not

be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be

relied upon in making purchasing decisions. The development, release, timing, and pricing of any features or functionality

described for Oracle’s products may change and remains at the sole discretion of Oracle Corporation.

This document is provided for information purposes and should not be relied upon in making a purchasing decision. The

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any

other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of

merchantability or fitness for a particular purpose.

THIS DOCUMENT IS NOT PART OF A LICENSE AGREEMENT NOR CAN IT BE INCORPORATED INTO ANY CONTRACTUAL

AGREEMENT WITH ORACLE CORPORATION OR ITS SUBSIDIARIES OR AFFILIATES.

Failure to adhere to these benchmarks does not constitute a breach of Oracle s obligations. We specifically disclaim any

liability with respect to this document and no contractual obligations are formed either directly or indirectly by this

document.

2 WHITE PAPER | Cloud Native Monetization | Version 1.00

 Copyright © 2020, Oracle and/or its affiliates

TABLE OF CONTENTS

Safe Harbor Statement 1

Introduction 3
The Importance of Cloud Native Monetization 3
Oracle Communications Billing and Revenue Management (BRM) 3

Deploying BRM on Cloud Native Infrastructure 5
The Features and Extensibility of BRM, the Agility and Efficiency of Cloud Native 5
BRM Multi Service Architecture 6
Example Cloud Native Deployment topology in Oracle Cloud Infrastructure (OCI) 7

BRM Cloud Native Benefits 8
Deployment Benefits 8

Faster Installation 8
Operational Benefits 9

Environment Replication 9
Customization 9
Patching 10
Configuration Changes 10
Batch Job Invocation 10
Logging and Regular Operational Benefits 11
Efficient Scalability 11
Self-Healing 11

Future Upgrades 12
Time To Market Benefits 12

Summary 13

Glossary of terms 14

3 WHITE PAPER | Cloud Native Monetization | Version 1.00

 Copyright © 2020, Oracle and/or its affiliates

INTRODUCTION

The Importance of Cloud Native Monetization

Modern monetization systems for 5G converged charging, communications, media, cloud and digital goods and services

markets will need to take optimal advantage of compute, network, and storage infrastructure to operate and scale efficiently

and grow as the business demands. These requirements translate into the need for monetization systems to support a cloud

native containerized, orchestrated and multi-service deployment architecture. Diving a little deeper into these terms:

• Containerized – portable, lightweight application components that can be rapidly spun-up and down, taking

advantage of core Linux kernel capabilities (namespaces and control groups) that are much more efficient than

Hypervisor-based virtualization technologies.

• Orchestrated – managing the lifecycle of the multiple containers that comprise the application by abstracting the

underlying infrastructure and providing built-in scalability and resiliency through the definition of a declared state

of deployment that is maintained by the orchestration engine. Container orchestration technology enables simpler

application management and dramatically reduces operational complexity.

• Multi-service – an architecture where application components representing specific functional concerns are

deployed in separate containers to aid scalability, resiliency, and observability. Core business functions should be

deployed as multi-replica containers.

The above-mentioned cloud native characteristics will be essential to take advantage of today’s DevOps aligned Continuous

Integration/Continuous Delivery (CI/CD) toolchains. This will help to minimize time-to-value, scale efficiently, and improve

the overall operational quality of deployments. Some business benefits of cloud native deployment include:

• Significantly reduced vanilla installation time

• Rapid environment replication for development, testing and faster root cause analysis of potential issues

• Self-healing capabilities for greater service availability

• Simpler updates with less downtime

• Efficient scaling that takes maximum advantage of the available compute resources (nodes)

• Faster launch of reliable market offerings by taking advantage of CI/CD toolchain integration and automation

Oracle Communications Billing and Revenue Management (BRM)

Oracle Communications Billing and Revenue Management (BRM) is a proven, reliable, modern monetization solution that is

foundational to the digital commerce operations of leading telecommunications and enterprise customers. BRM provides

converged, real-time charging as part of an end-to-end revenue management solution for supporting the key business

processes of generation, capture, collection, and analysis of revenue.

• Flexible service, industry and partner-enabled business model support.

• Faster innovation: rapidly launch digital offers with design-time flexibility.

• IT agility: modern cloud native deployment model with low total cost of ownership.

Figure 1 – BRM feature coverage

4 WHITE PAPER | Cloud Native Monetization | Version 1.00

 Copyright © 2020, Oracle and/or its affiliates

Oracle Converged Charging System

BRM Release 12 has been designed with the 5G future in mind supporting the 5G service-based architecture while offering a

feature rich converged charging, billing and revenue management system that is both network grade and extensible (figure

1). BRM provides a foundation for monetizing 5G Non-Standalone Architecture based services and Standalone Architecture

slice-based offerings, available in a DevOps aligned cloud native deployment model to significantly reduce costs and

accelerate innovation

BRM’s Elastic Charging Engine (or ECE) is an advanced, network grade and high performance in memory converged

charging grid with built-in resilience. It includes a comprehensive set of southbound core network integration points

including support for Diameter and the 3GPP 5G HTTP/2 REST charging message, as well as flexible offline mediation

capabilities.

ECE is integrated into the core BRM revenue management functionality (shown in the upper half of the diagram) which

provides flexible and extensible business logic across customer management, service management, subscription

management, re-rating, billing, invoicing and accounts receivable.

The high-level functional architecture is shown in figure 2. Shown in the lower half of this diagram we have BRM’s

converged charging capabilities, supporting integrated online and offline charging in a single architecture.

Figure 2 – BRM Functional Architecture

BRM exposes a large number of functions with a documented SDK to aid integration into northbound enterprise business

systems. Integration methods include web services and via the BRM JCA resource Adapter. In addition, BRM has data

managers supporting integration with external taxation databases and payment processing systems.

Supporting the core functionality, BRM has a comprehensive set of client applications covering operations and

administration, customer management and offer design.

5 WHITE PAPER | Cloud Native Monetization | Version 1.00

 Copyright © 2020, Oracle and/or its affiliates

DEPLOYING BRM ON CLOUD NATIVE INFRASTRUCTURE

The Features and Extensibility of BRM, the Agility and Efficiency of Cloud Native

BRM can be configured to run as a cloud native application in a containerized and orchestrated deployment architecture,

taking advantage of cloud native infrastructure and DevOps CI/CD tooling to enable service providers to design, test and

deploy services more quickly, operate more efficiently, and grow with the business (figure 3).

Figure 3 – BRM Cloud Native container images uses standard cloud native techologies

BRM has a multi service architecture with each service provided as a Docker image for deploying as a run time container in a

Kubernetes cluster on cloud infrastructure. This deployment option takes advantage of industry accepted cloud native

technologies such as Docker for the container runtime, Kubernetes for container orchestration, Helm for packaging and

deployment, and the EFK stack, comprising of ElasticSearch, fluentd and Kibana for logging. BRM’s cloud native deployment

retains the features and extensibility of BRM whilst taking advantage of the agility and efficiency of cloud native

infrastructure and tooling.

A high level logical view of BRM’s cloud native deployment option is shown in figure 4 below.

Figure 4 – BRM Cloud Native deployment high level logical view

6 WHITE PAPER | Cloud Native Monetization | Version 1.00

 Copyright © 2020, Oracle and/or its affiliates

BRM Multi Service Architecture

Figure 5 shows BRM’s multi-service architecture. Each BRM service, running as a Docker container, is deployed as a

Kubernetes POD, the fundamental building block of Kubernetes. Many of the core BRM services can be deployed and

managed as multiple replicas within a Kubernetes replica set, which enables efficient scaling and aids resiliency. Kubernetes

operates on the principle of declared state – you tell it how many instances of a POD you want running and it will ensure that

the number of replicas matches the declared state.

Figure 5 – BRM Cloud Native Multi-Service Architecture

The BRM application Kubernetes cluster requires that cloud native infrastructure and tooling is in place. This includes cloud

compute infrastructure, such as Oracle Cloud Infrastructure (OCI), a CI/CD automation pipeline, monitoring and logging

software, Kubernetes cluster networking and volume storage, which is accessed by PODs via a persistent volume claim

(PVC). Note that the Oracle database sits outside of the BRM application Kubernetes cluster, typically deployed in a separate

subnet.

7 WHITE PAPER | Cloud Native Monetization | Version 1.00

 Copyright © 2020, Oracle and/or its affiliates

Example Cloud Native Deployment topology in Oracle Cloud Infrastructure (OCI)

Cloud native BRM has been designed to be deployed in both public and private cloud infrastructure. An example

deployment model is shown in figure 7, which shows BRM deployed in Oracle Cloud Infrastructure (OCI). Note that not all

details are shown in this diagram and it is intended to be for illustrative purposes only, rather than represent a specific

deployment architecture. Deployment approaches will be dependent upon specific business requirements. For deployment

in OCI, it is recommended to configure BRM application worker nodes in three different fault domains (FDs) within an

Availability Domain (AD). The diagram shows an Oracle RAC cluster in a dedicated subnet, using Active Data Guard for

replication with a secondary database in another AD, depending upon business requirements. From an ECE perspective,

Coherence federation is used to ensure that the charging grid cache is replicated to a secondary availability domain (not

shown).

Figure 7 – Example BRM Cloud Native OCI Deployment Model

A bastion host is typically configured in a public subnet to allow access to the BRM worker nodes from the customer’s network

(for example via SSH). The BRM web clients and inbound integrations connect to the load balancer through the Internet

gateway. Outbound integrations, for example payment or taxation server integration, are managed through the NAT gateway,

which is also used by the worker nodes for outbound access to the Internet (for example to perform yum updates).

8 WHITE PAPER | Cloud Native Monetization | Version 1.00

 Copyright © 2020, Oracle and/or its affiliates

BRM CLOUD NATIVE BENEFITS

Cloud native deployment of BRM has the potential to provide significant benefits with regards to initial deployment, ongoing

operations and reduced time to market to launch and monetize new products and services. This section provides a high-

level summary of these benefits. It is important to understand that the degree of savings depends on specific deployment

architecture, workload, degree of product customization and overall adoption of DevOps CI/CD and cloud native tooling

across the service provider’s broader IT estate. Figure 8 summarizes indicative deployment and operational efficiencies of

cloud native BRM when compared to a traditional BRM deployment model.

Figure 8 – Indicative operational savings compared to traditional on-premise BRM deployment*

Deployment Benefits

Faster Installation

The initial deployment time for BRM in a cloud native environment is significantly reduced through the use of Helm (the

package manager for Kubernetes applications). A separate Helm chart is provided for the database schema deployment

flexibility for those customers that already have a database in place. Helm unifies the installation experience, eliminating the

need for customers to manually download software technology dependencies, such as compilers, the JDK, and Perl scripts

to a compute server. The reduction in installation steps can provide significant time and cost savings for customers when

setting up test and production environments.

Table 3 describes the Helm charts that are included in the BRM cloud native deployment package.

HELM CHART DESCRIPTION

oc-cn-init-db-helm-chart Initializes and upgrades the database schema for the BRM server functions.

oc-cn-op-job-helm-chart Creates WebLogic server domains for Billing Care and Business Operations Center (BOC).

oc-cn-helm-chart Deploys the core BRM server components, Pricing Design Center (PDC) and Pipeline

Configuration Center (PCC).

oc-cn-ece-helm-chart Deploys the Elastic Charging Engine (ECE) and its services. Sets the connection with the BRM

server functions and Pricing Design Center. Configures the sharing of persistent volumes with the

BRM server functions.

Table 3 – Helm Charts included in the BRM cloud native deployment package

9 WHITE PAPER | Cloud Native Monetization | Version 1.00

 Copyright © 2020, Oracle and/or its affiliates

From the perspective of BRM’s Elastic Charging Engine (ECE), cloud native deployment simplifies the Coherence cluster

deployment, eliminating the need for customers to define the primary and secondary driver machines, sync software

binaries across the server nodes or VMs and configure the cluster topology (in eceTopology.conf).

The customer would define the number of replicas by overriding the default values from values.yaml with adding custom

values in override-values.yaml and then run the Helm install, which ensures that all components are started in sequence

and places the system into a usage processing state.

ECE high availability is configured by default, with each Elastic Charging Server node consisting of three POD replicas and

each protocol gateway node consisting of 2 POD replicas.

BRM’s WebLogic applications, such as Pricing Design Center (PDC), Billing Care (BC) and Business Operations Center (BOC)

are significantly faster to install as WebLogic is already baked into the base Docker images.

Based on indicative Oracle lab metrics, and assuming the readiness of underlying cloud native infrastructure and the

database, vanilla BRM application installation time could be significantly reduced by approximately 60%.

Operational Benefits

Environment Replication

Once initial deployment has taken place, separate environments can be rapidly replicated by simply overriding the Helm

configuration with environment specific values in the values.yaml override file and performing a Helm install. This is a

rapid process that can offer significant savings, particularly to those customers that require large numbers of environments

to be spun up within their DevOps CI/CD processes.

Rapid environment replication can also have significant benefits to aid root cause analysis of any potential issues observed

in production, by replicating the production environment in a dev/test environment for rapid problem resolution through

investigation, patching and validation.

Based on indicative Oracle lab metrics, BRM environment replication time could be reduced by as much as 65%,

depending on the specific customer DevOps processes and toolchain adoption.

Customization

As discussed earlier a key benefit of the BRM cloud native architecture is the ability to integrate into a service provider’s

CI/CD workflow to support automated build, test and deployment processes. Figure 9 shows the high-level flow involved

when extending BRM through new customizations, showing Oracle Cloud Infrastructure as the continuous delivery and

deployment infrastructure. BRM’s cloud native deployment option supports BRM’s extensibility and customization

capabilities. Custom C and Java code can be used to extend the core business logic capabilities, develop new client

applications and extend the Billing Care UI.

A customer or partner would take the base BRM images, store them in their registry of choice, and then create a new image

with the customizations using Docker layering. After the build and test process these new images will be pushed to the

container registry for deployment into test and production under the co-ordination of the DevOps CI/CD pipeline tooling.

Figure 9 – Customizing and extending BRM via CI/CD toolchain integration

10 WHITE PAPER | Cloud Native Monetization | Version 1.00

 Copyright © 2020, Oracle and/or its affiliates

The time for customization bug detection, fixing, testing and deployment can be significantly reduced when deploying BRM

alongside a CI/CD toolchain and supported by DevOps automation. It is anticipated that deploying BRM in an automated

cloud native environment could offer customization implementation efficiencies of 20% or greater.

Patching

The benefits of CI/CD automation significantly reduces the patching cycle (whether for bug fixes or security updates) from

patch updates on a dev and test environment, automated testing and validation, through to deployment to staging and final

production environments. Depending upon the nature of the patch (e.g. whether a one-off patch or patchset, degree

of data model changes etc), it is anticipated that the efficiency savings achieved for patching could be as high as

50%.

Patchset Upgrades

Patchset upgrades in a BRM cloud native deployment are faster and more efficient. The upgrade process consists of running

the init_db container in upgrade mode, which performs the database schema upgrade, and then perform a Helm upgrade

with the new set of images. During the upgrade, the same port and IP (via the Kubernetes service proxy) continues to service

requests.

For ECE, Kubernetes will take care of rolling restart of the ECE pods and each pod will automatically check the Coherence

cluster status to make sure partition rebalancing is complete during the restart.

Configuration Changes

Core BRM business logic configuration changes are very straightforward and require near zero service downtime as a rolling

upgrade of the BRM server-side components is possible.

Each BRM application service has its configuration externalized via a Helm chart and Kubernetes ConfigMaps. Externalized

configuration is an important characteristic of cloud native applications, decoupling the Docker images from the

configuration (which can be stored in a version control system). Kubernetes makes rolling out (and rolling back) new

configuration changes easy through the use of Helm, which creates and updates deployments and services (figure 10).

Figure 10 – Near zero downtime configuration changes

For example, changes in the BRM pin.conf file can be achieved by invoking helm upgrade specifying the updated

override-values.yaml file. Similarly, after invoking changes in config_business_params for example, by running helm

upgrade, the new PODs will read their configuration from the database with no overall service loss due to the rolling upgrade

process supported by Kubernetes.

Whenever a BRM ConfigMap or Secret file is changed, BRM supports the configuration of a POD to automatically update its

deployment specification and hence support a rolling deployment. This is achieved via the use of annotations in the

Kubernetes deployment YAML descriptor.

A business logic configuration change that would have typically needed a system restart is now supported by a rolling

update of the CM or DM, providing near zero BRM ecosystem downtime.

Batch Job Invocation

Kubernetes jobs are provided for key revenue management batch applications, such as billing jobs, invoicing, and

import/export pricing utilities, making configuration and invocation efficient and straightforward, and adhering to cloud

native best practices by avoiding the need to exec into the POD containers to directly run the jobs.

11 WHITE PAPER | Cloud Native Monetization | Version 1.00

 Copyright © 2020, Oracle and/or its affiliates

Logging and Regular Operational Benefits

The use of industry standard cloud native tooling provides improved efficiency for regular day to day BRM operations to

ensure smooth running of the system. For example, all BRM PODs use the ElasticSearch, Fluentd and Kibana stack for

centralized logging and visualization (figure 11).

Figure 11 – BRM cloud native logging environment using the EFK stack

Each fluentd agent pod is deployed within a Kubernetes DaemonSet, which deploys one pod for each node in the BRM

application cluster. The BRM application PODs write logs to stdout, which are collected by fluentd and persists them into

the ElasticSearch object store, ready for visualization by Kibana.

Efficient Scalability

A key principle of cloud native applications is the ability to efficiently scale multiple service instances, whether that is “up” to

support new capacity demands for example charging operations during busy seasons or “down” to free up capacity when

certain applications are not required to be running (for example for communications service providers, billing and invoicing

jobs may only be required to be run during certain periods in a month).

The core BRM business logic services, for example the connection managers and data managers, are multi-replica

(managed by a ReplicaSet). Load balancing across multiple CMs and DMs is inherent and is maintained by the Kubernetes

service proxy, which abstracts the client service requests from the specific instances of the backend serving PODs. This

provides significant efficiency improvements when load sharing multiple CMs and DMs across workloads. Figure 12

illustrates the efficient scaling of BRM’s multi-replica PODs. The number of desired replica’s can be specified via

configuration, with Kubernetes perfoming scaling to meet this state. From the command line business logic replicas can be

scaled with the command:

kubectl scale deployment/cm – replicas=4

Changing the number of replicas will create or shutdown pods without client disruption.

Figure 12 – Efficient BRM business logic scalability using Kubernetes replicas

Self-Healing

Kubernetes is inherently self-healing, always operating on the principle of declared state and ensuring the correct number of

POD replicas are running. The BRM business logic and data management services will gracefully terminate if Kubernetes

decides to reduce the number of running PODs.

12 WHITE PAPER | Cloud Native Monetization | Version 1.00

 Copyright © 2020, Oracle and/or its affiliates

Future Upgrades

It is anticipated that deploying BRM in a cloud native environment could offer future upgrade efficiencies of 20% or

greater, depending on the specific deployment context and project scope (for example the degree of customization) and

the extent to which cloud native and DevOps is embraced.

Future minor and major upgrades will follow the same high-level process as described previously for patchset upgrades

(specific times and upgrade process details will be release specific).

Time To Market Benefits

Deployment of BRM on cloud native infrastructure within a DevOps CI/CD toolchain can contribute to overall time to market

benefits beyond the deployment, operational and upgrade savings described above. When deployed alongside an

automated DevOps toolchain and supporting business processes, and in combination with adoption across a service

provider’s broader IT estate, cloud native BRM can contribute to the faster launch of new services and resultant earlier

revenue generation. The combination of BRM’s inherent flexibility and extensible business logic with the efficiency gains

from a fully automated Continuous Integration/Continuous Deployment (CI/CD) toolchain and broader cloud native IT

adoption across the enterprise, can shorten the time from concept to launch, which will be critical as we enter the “digital

native” and 5G era.

13 WHITE PAPER | Cloud Native Monetization | Version 1.00

 Copyright © 2020, Oracle and/or its affiliates

SUMMARY

Oracle Communications Billing and Revenue Management is a modern monetization solution that provides real time

converged charging for any business model. It is available in a cloud native deployment option, supporting a Kubernetes-

orchestrated containerized multi-service architecture to facilitate continuous integration / continuous delivery and DevOps

practices. Best deployed on Oracle’s Cloud Infrastructure with its autonomous capabilities, adaptive intelligence and

machine learning cyber security, BRM cloud native has the option of being deployed in public or private cloud infrastructure

environments that provide standard cloud native tooling and can support the Oracle database.

BRM’s cloud native deployment option enables BRM to take advantage of the efficiencies of modern cloud compute

infrastructure and automated toolchains, supporting easier and faster installations, agile service development and launch,

simplified configuration updates, rapid environment replication and efficient scaling. As a result, BRM can enable service

providers to design, test and deploy services faster, improve operational savings and scale with the business.

Figure 13 – Summary of cloud native BRM Benefits

CONNECT WITH US

Call +1.800.ORACLE1 or visit oracle.com.

Outside North America, find your local office at oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are subject to change without

notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties

and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed

either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without

our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of

SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered

trademark of The Open Group. 1020

Cloud Native Monetization

October, 2020

Authors: Richard Hallett

GLOSSARY OF TERMS

AD An Availability Domain in Oracle Cloud Infrastructure

CI/CD Continuous Integration / Continuous Delivery

CM The BRM Connection Manager service

DM The BRM Data Manager service

ECE BRM’s Elastic Charging Engine

EFK ElasticSearch, Fluentd, Kibana – a popular logging stack

FD A Fault Domain in Oracle Cloud Infrastructure

Helm A package and deployment manager for Kubernetes applications

OCI Oracle Cloud Infrastructure

POD Kubernetes deployment unit

PVC Persistent Volume Claim

RAC Oracle Real Application Clusters

https://www.oracle.com/
https://www.oracle.com/corporate/contact/
https://blogs.oracle.com/
https://www.facebook.com/Oracle/
https://twitter.com/oracle

